

Biomarkers

Andrea R. Filippi

Università di Pavia e Fondazione IRCCS Policlinico San Matteo

Società Italiana di Radiobiologia

Radioterapia di precisione per un'oncologia innovativa e sostenibile

DICHIARAZIONE

Relatore: Andrea R. Filippi

Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del Ministero della Salute, è richiesta la trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo sanitario.

- Posizione di dipendente in aziende con interessi commerciali in campo sanitario NIENTE DA DICHIARARE
- Consulenza ad aziende con interessi commerciali in campo sanitario ASTRA ZENECA, ROCHE
- Fondi per la ricerca da aziende con interessi commerciali in campo sanitario ASTRA ZENECA, ROCHE, MSD (istituzionali)
- Partecipazione ad Advisory Board ASTRA ZENECA, ROCHE
- Titolarità di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario NIENTE DA DICHIARARE
- Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario NIENTE DA DICHIARARE

Società Italiana di Radiobiologia

Radioterapia di precisione per un'oncologia innovativa e sostenibile

AIRO2022

XXXII CONGRESSO NAZIONALE AIRO XXXIII CONGRESSO NAZIONALE AIRB XII CONGRESSO NAZIONALE AIRO GIOVAI

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Meehan et al. Front. Oncol., 24 April 2020

Avecsizatione Rectionary e Chorchegia circuit

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Toward a New Framework for Clinical Radiation Biology

Henning Willers, MD , Florence K. Keane, MD Sophia C. Kamran, MD

Future of Biomarker-Directed Radiation Therapy

Hematology/Oncology Clinics 2019

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Static, tissue-based biomarkers

4 main types of "biomarkers have been studied; so far, no-one has been validated in a RCT:

- 1. DDR-related biomarkers (MRE11, etc.)
- 2. Genetic signatures (RSI)
- 3. Epigenetic signatures (microRNA)
- 4. Microenvironmental biomarkers (immune-related biomarkers)

RAB Società Italiana di Radiobiologia

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Clinical Oncology 2015 27561-569DOI: (10.1016/j.clon.2015.06.002)

Radioterapia di precisione per un'oncologia innovativa e sostenibile

A Gene Expression Model of Intrinsic Tumor Radiosensitivity: Prediction of Response and Prognosis After Chemoradiation

Table 3. Radiation network hub genes				
Gene name	HU6800 Probeset	U133Plus Probeset	NKI reporter	
Androgen receptor	M23263_at	211110_s_at	324293	
c-Jun	J04111_at	201466_s_at	329987	
STAT1	AFFX-HUMISGF3A/	AFFX-HUMISGF3A/	308421	
	M97935_MA_at	M97935_MA_at		
PKC	X06318_at	207957_s_at	322907	
RelA (p65)	U33838_at	201783_s_at	326475	
c-Abl	X16416_at	202123_s_at	304192	
SUMO-1	U83117_at	208762_at	308596	
CDK1 (p34)	U24153_at	205962_at	332859	
HDAC1	D50405_at	201209_at	308690	
IRF1	L05072_s_at	202531_at	310653	

Eschrich S et al, IJROBP 2009

Società Italiana di Radiobiologia

Radioterapia di precisione per un'oncologia innovativa e sostenibile

A Gene Expression Model of Intrinsic Tumor Radiosensitivity: Prediction of Response and Prognosis After Chemoradiation Time to Locoregional Recurrence

RSI correlates to response for rectal and esophageal cancer patients

RSI correlates with LC in the H&N cancer cohort, n=92

RAO Avenutationer Radiotragia e Oreologia

RAO)

Eschrich S et al, IJROBP 2009

Radioterapia di precisione per un'oncologia innovativa e sostenibile

A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study.

Genomic-Adjusted Radiation Dose (GARD): a novel model that integrates RSI and physical dose of radiation to quantify the biological effect of a given dose in an individual patient.

GARD is a pre-clinically and clinically validated combination of a genomic profile, which assumes pan-tissue biological networks of radiosensitivity, with LQ model.

Erasmus breast cancer cohort distant-metastatis free survival

Scott et al., Lancet Oncol 2017

Società Italiana di Radiobiologia

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): a cohort-based pooled analysis.

GARD is associated with time to first recurrence and overall survival for different cancer types, overperforming physical radiation dose (EQD2)

	Events	Patien	u u	Relative hazard (95% CI)
GARD				
Endometrium (TCC)	33	63		0-98 (0-92-1-03)
Glioma (TCGA)	134	188		0-97 (0-951-00)
Melanoma (TCC)	7	10	.	0-86 (0-76-0-97)
Non-small-cell lung (MCC)	38	60	-	0-99 (0-96-1-01)
Pancreas (TCC)	33	48		1-00 (0-941-06)
Triple-negative breast cancer (MCC)	9	55		0-88 (0-79-0-98)
Pooled	254	424	+	0-97 (0-950-99)
			0-8 0-9 1-0 1-1	1-5
B				
Sham GARD				
Endometrium (TCC)	29	141	+	1-00 (0-96-1-04)
Glloma (TCGA)	56	56		1-02 (0-98-1-05)
Melanoma (TCC)	22	31		0-97 (0-94-1-01)
Pancreas (TCC)	17	25		1-02 (0-91-1-14)
Pooled	124	253	+	1-00 (0-98-1-02)
			0-8 0-9 1-0 1-1	1-5
c				
Physical dose of radiation (EQD2)				
Endometrium (TCC)	33	63		1-03 (0-93-1-15)
Glioma (TCGA)	134	188		0-99 (0-89-1-09)
Melanoma (TCC)	7	10	÷-	NA
Non-small-cell lung (MCC)	38	60	+	1-01 (0-96-1-06)
Pancreas (TCC)	33	48		1-04 (0-87-1-25)
Triple-negative breast cance (MCC)	9	55		0-93 (0-85-1-02)
Pooled	254	424	+	1-00 (0-96-1-04)
			0.8 0.9 1.0 1.1	1-5
	In	dicates ass Impro	oclation with indicates associat with worse outcome	ion me
Relationaria Checkingia citica			BOLOGNA, 25-	27 NOVEME
RAO			PAL	AZZO DEI CONGF

Scott et al., Lancet Oncol 2021

Società Italiana di Radiobiologia

AIRO2022

XXXII CONGRESSO NAZIONALE AIRO XXXIII CONGRESSO NAZIONALE AIRB XII CONGRESSO NAZIONALE AIRO GIOVA

Radioterapia di precisione per un'oncologia innovativa e sostenibile

www.nature.com/npjgenmed

Check for updates

ARTICLE OPEN

Radiosensitivity index emerges as a potential biomarker for combined radiotherapy and immunotherapy

Yang-Hong Dai ^[D], Ying-Fu Wang¹, Po-Chien Shen¹, Cheng-Hsiang Lo¹, Jen-Fu Yang¹, Chun-Shu Lin¹, Hsing-Lung Chao^{1,2} and Wen-Yen Huang ^{[D],382}

BIOLOGY CONTRIBUTION

The Radiosensitivity Index Gene Signature Identifies Distinct Tumor Immune Microenvironment Characteristics Associated With Susceptibility to Radiation Therapy

G. Daniel Grass, MD, PhD,* Juan CL. Alfonso, PhD,¹ Eric Welsh, PhD,¹ Kamran A. Ahmed, MD,* Jamie K. Teer, PhD,¹ Shari Pilon-Thomas, PhD,¹ Louis B. Harrison, MD,* John L. Cleveland, PhD,¹ James J. Mulé, PhD,¹ Steven A. Eschrich, PhD,¹ Heiko Enderling, PhD,*⁴ and Javier F. Torres-Roca, MD* Tumors with an estimated high sensitivity to RT demonstrated distinct enrichment of interferonassociated <u>signaling pathways</u> and immune cell infiltrates (eg, CD8⁺ <u>T cells</u>, activated <u>natural killer cells</u>, M1-macrophages; q < 0.05), which was in the context of diverse expression patterns of various immunoregulatory molecules.

npj Genomic Medicine 2021 and IJROBP 2022

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Biomarker signatures for primary radiochemotherapy of locally advanced HNSCC. Hypothesis generation on a multicentre cohort of the DKTK-ROG

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Dynamic biomarkers: ctDNA

Modified from Crowley et al. (2013) Nat Rev Clin Oncol

Keller et al. (2020) Br J Cancer

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Retrospective ctDNA MRD Data From >240 NSCLC Patients

	Ν	Stage	Treatment(s)	ctDNA assay
Abbosh 2017	24	IA-IIIB	Surgery +/- chemo	Natera
Chaudhuri 2017	37	IB-IIIB	RT and/or surgery +/- chemo	CAPP-Seq
Chen 2019	25	I-III	Surgery +/- chemo	cSMART
Moding 2020	48	IIB-IIIB	chemoRT +/- immunotherapy	CAPP-Seq
Abbosh 2020	88	I-III	Surgery +/- chemo	ArcherDx
Zviran 2020	22	I-III	Surgery +/- chemo	MRDetect

All demonstrate strong prognostic power of ctDNA MRD in localized NSCLC

Abbosh et al. *Nature*Chaudhuri et al. *Cancer Discov*Chen et al. *Clin Cancer Res*Moding et al. *Nat Cancer*Abbosh et al. *AACR Annual Mtg*Zviran et al. *Nat Med*. 2020

Stanford MEDICINE 7

Società Italiana di Radiobiologia

Radioterapia di precisione per un'oncologia innovativa e sostenibile

ctDNA MRD Detection in Localized NSCLC

Radioterapia di precisione per un'oncologia innovativa e sostenibile

"In silico" Clinical Trial to Test Effect of Consolidation Immunotherapy in ctDNA MRD+ NSCLC

- Retrospective study of 62 patients with Stage III NSCLC
- In silico model of ctDNA-guided trial
- No differences in baseline characteristics between cohorts

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Outcomes in Patients with Undetectable ctDNA After CRT

Assuming ~10% OS benefit for consolidation I/O, number needed to treat to benefit one ctDNA MRD-negative patient is >100

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Outcomes in Patients Without ctDNA Response During Consolidation ICI

Radioterapia di precisione per un'oncologia innovativa e sostenibile

ctDNA Clearance During Consolidation ICI is Associated With Improved Outcomes

AIRO2022

XXXII CONGRESSO NAZIONALE AIRO XXXIII CONGRESSO NAZIONALE AIRB XII CONGRESSO NAZIONALE AIRO GIOVAN

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Dynamic Imaging Biomarkers

Imaging tumour metabolism and dose painting

Dose painting: selectively deliver dose to different parts of a tumour, i.e. higher doses to treatment-resistant areas, rather than escalating the dose to the whole tumour ("biologic target volume").

Areas of high pre-treatment 2-["F]FDG uptake within the primary tumour are considered to be more aggressive. Therefore, these areas may be considered the target for dose-escalation.

PET-boost trial (Netherlands, NCT01024829) showed the feasibility of dose-escalation using an integrated boost to the primary tumour or high FDG uptake regions (>50% SUVmax) whilst keeping the pre-defined dose constraints. The dose could be escalated to at least 72 Gy in 75% of patients, without increasing the dose to the OAR.

A – Red=gross tumor volume; orange=PRV (mediastinal envelope + 5 mm margin); pink=planning target volume (PTV) of involved lymph nodes; green=PTV of FDG-avid regions (>50% SUV_{max}); purple=PTV of primary tumor.

B – Typical dose distribution of a patient treated with a high radiation dose to the whole primary tumor (homogeneous boost). The thick blue line represents the 95% isodose of the boost dose to the primary tumor; the thin blue line depicts the 95% isodose of 66 Gy to the involved lymph nodes. This example shows that a part of the PTV of the primary tumor overlaps with the mediastinal envelope. This part of the PTV is not escalated and receives the conventional dose of the mediastinal envelope.

Fig. 1. Example of treatment planning taking into account the mediastinal envelope.

Van Diessen et al, 2018

AIRO2022

XXXII CONGRESSO NAZIONALE AIRO XXXIII CONGRESSO NAZIONALE AIRB XII CONGRESSO NAZIONALE AIRO GIOVAI

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Dynamic Imaging Biomarkers

Intermediate/mid-treatment 2-[18F]FDG PET/CT and adaptive RT: RTOG1106

Prospective phase 2 RTOG1106 trial: LA NSCLC, dose escalation to persistent FDG avid tumour on mid-treatment FDG PET/CT (after 40 Gy) Boost as SIB with daily-fraction size 2.2 to 3.8 Gy up to 80.4 Gy/30 fractions (median 71 Gy).

	R0617 Control Arm	R0617 High-dose Arm	R1106 Control Arm	R1106 Adaptive Arm
3-yr OS	44.5%	31.1%	49.1%	47.5%
3-yr Local-regional failure (institution reported)	47.1%	50.9%	30.0%	30.2%
2-yr In-field primary tumor local control (institution reported)	NS	NS	58.5%	75.6%
2-yr In-field local-regional control (institution reported)	NS	NS	55.6%	66.3%
Cardiac event Grade 3+ (crude %)	17.9%	19.8%	2.6%	1.3%
Pulmonary toxicity Grade 3+ (crude %)	20.6%	19.3%	14.3%	23.8%
Esophagitis Grade 3+ (crude %)	5.0%	17.4%	7.9%	3.8%

Kong et al, ASCO 2021

Società Italiana di Radiobiologia

© 2021 by American Society of Clinical Oncology

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Dynamic Imaging Biomarkers

Other non-2-[18F]FDG radiopharmaceuticals

PET tracers other than 2-[18F]FDG have a potential role in imaging tumour biology and heterogeneity, through the evaluation of hypoxia, proliferation, and vascularization ([18F]FMISO, [18F]HX4 and [18F]FAZA).

A prospective phase II multicenter dose escalation study applying [18F]FMISO in NSCLC in hypoxic sub-volumes (RTEP5), showed the feasibility of escalating dose up to 86 Gy, without significant toxicity.

After 3 years of follow-up, the RT boost increased median OS by 11.2 months in [18F]FMISO-positive patients.

¹⁸F-FDG

Vera et al, RTEP5 Study, 2017

Società Italiana di Radiobiologia

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Dose escalation to hypoxic subvolumes in head and neck cancer: A randomized phase II study using dynamic [18F]FMISO PET/CT

Fig. 2. Example patient (#041) in study arm C with dynFMISO based DE: (A, C) planning CT with FMISO PET (2 h pi). (B, D) planning CT with contours (GTV, red; lymph nodes, pink, skin, grey; PTV_{3CCy}, yellow; PTV_{acCy}, bight green; spinal cord, dark green; parotid gland left, purple) with HV overlaid in pink and isodose distribution of radiotherapy plan with dose escalation.

Welz et al, Radiother Oncol 2022

Società Italiana di Radiobiologia

Fig. 3. Local control of the three study groups. Arm A: non-hypoxic (blue); arm B: hypoxic, ST (red); arm C: hypoxic, DE (green). Log-rank test for non-hypoxic (arm A) vs. hypoxic (arms B + C): p = 0.039. Log-rank test for study arms B (ST) vs. C (DE): p = 0.150.

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Radiomics/Radiogenomics Biomarkers

Extraction of a large number of quantitative features from medical images using advanced imaging processing and analysis tools.

PET and CT features were found predictive of local control in retrospective analyses for many tumour entities, e.g. lung and rectal cancer.

Radioterapia di precisione per un'oncologia innovativa e sostenibile

FAB

Società Italiana di Radiobiologia

A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study

Associazione Italiana

Radioterapia e Oncologia clinica

(RA)

Sun et al. Lancet Oncol 2018

BOLOGNA, 25-27 NOVEMBRE

PALAZZO DEI CONGRESSI

Association Reference Reference Construction Construction

Radioterapia di precisione per un'oncologia innovativa e sostenibile

The exact same CT-based signature, trained in lung cancer, works in head & neck cancer

RAB

Società Italiana di Radiobiologia

RAO Avenutationer Radiotragia e Oreologia

rAo)

BOLOGNA, 25-27 NOVEMBRE PALAZZO DEI CONGRESSI

Aerts, Lambin et al. Nat. Commun. 2014; Leijenaar et al, Acta Oncologica 2015

Associazione Italiana Radioterapia e Oncologia clinica

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Results of applying SUNDIAL in the BlueSky Radiomic Study

RAO Avenutationer Radiotragia e Oreologia

rAo)

The application of the SUNDIAL radiomics signature in the BlueSky cohort did not statistically significantly separate patients classified with different prognosis (unresectable stage 3 receiving CRT plus durvalumab)

Filippi et al, poster@ELCC22

Radioterapia di precisione per un'oncologia innovativa e sostenibile

H&N: BD2Decide study

- Multicentric European clinical trial
- Advanced HN cancer patients (Stage III-IVB HPV- and +)
- Includes CT imaging, Clinical, and biological data
- Multiple outcomes (OS, PFS, DM)
- Retrospective + prospective cohort

Keek et al Cancers 2021 doi: 10.3390/cancers13133271.

Società Italiana di Radiobiologia

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Radiomics result

	Radiomics feature
1	log.sigma.5.0.mm.3D glszm GrayLevelNonUniformity
	wavelet.HLH_giszm_ZoneEntropy
	wavelet.HLL giszm ZoneEntropy
	wavelet.LLH giszm ZoneEntropy
	original shape Sphericity
	log.sigma.4.0.mm.3D gldm DependenceEntropy
	wavelet.HHH girim LowGrayLevelRunEmphasis
	wavelet.HHL giszm ZoneEntropy
	log.sigma.5.0.mm.3D gldm LowGrayLevelEmphasis
	original firstorder Kurtosis
I	log.sigma.2.0.mm.3D girim RunEntropy

Keek et al Cancers 2021 doi: 10.3390/cancers13133271.

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Multiomics result

	Radiomics feature
iog sig	ma.5.0.mm.3D glszm GrayLevelNonUniformity
	wavelet.HLH_giszm_ZoneEntropy
	wavelet.HLL giszm ZoneEntropy
	wavelet.LLH giszm ZoneEntropy
	original shape Sphericity
log.	sigma.4.0.mm.3D gldm DependenceEntropy
wa	velet.HHH girim LowGrayLevelRunEmphasis
	wavelet.HHL giszm ZoneEntropy
log.si	gma.5.0.mm.3D gldm LowGrayLevelEmphasis
	original firstorder Kurtosis
	log.sigma.2.0.mm.3D girim RunEntropy

Clinical/Biological features	
TNM8	
Age	
ACE-27 comorbidity score	
Pack years	
Alcohol at diagnosis	
P16-status	
Haemoglobin level	

Keek et al Cancers 2021 doi: 10.3390/cancers13133271.

Società Italiana di Radiobiologia

AIRO2022

XXXII CONGRESSO NAZIONALE AIRO XXXIII CONGRESSO NAZIONALE AIRB XII CONGRESSO NAZIONALE AIRO GIOV,

Radioterapia di precisione per un'oncologia innovativa e sostenibile

Final remarks

- Currently, there are no biomarkers predictive of radiosensitivity or radiotherapy benefit used as standard of care.
- A few on the horizon show promise, especially when different approaches are combined.
- We need prospective to validate biomarkers-based strategies: GARD is one of the most advanced in application, as researchers at Lee Moffitt are starting a GARD-based study for deintensification in HPV-pos H&N and a second for guiding the use of RT boost in TNBC.
- Most of the radiomics studies are prognostic, and not prospectively validated; however, highquality efforts are ongoing in the field.
- As RT is such a commonly utilized form of cancer therapy, identifying and validating biomarkers would have the potential to improve outcomes for a very large number of patients across different cancer types, with a huge effect on oncology practice.

Società Italiana di Radiobiologia

